Bayesian Variable Selection for Gaussian Copula Regression Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Monte Carlo for Bayesian Variable Selection in Regression Models

This article describes a method for efficient posterior simulation for Bayesian variable selection in Generalized Linear Models with many regressors but few observations. A proposal on model space is described which contains a tuneable parameter. An adaptive approach to choosing this tuning parameter is described which allows automatic, efficient computation in these models. The method is appli...

متن کامل

Variable Selection for Regression Models

A simple method for subset selection of independent variables in regression models is proposed. We expand the usual regression equation to an equation that incorporates all possible subsets of predictors by adding indicator variables as parameters. The vector of indicator variables dictates which predictors to include. Several choices of priors can be employed for the unknown regression coeecie...

متن کامل

Bayesian Gaussian Copula Factor Models for Mixed Data.

Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variable...

متن کامل

Variable Selection for Gaussian Graphical Models

We present a variable-selection structure learning approach for Gaussian graphical models. Unlike standard sparseness promoting techniques, our method aims at selecting the most-important variables besides simply sparsifying the set of edges. Through simulations, we show that our method outperforms the state-of-the-art in recovering the ground truth model. Our method also exhibits better genera...

متن کامل

Bayesian Model Selection in Gaussian Regression

We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2020

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2020.1840997